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A novel reliAbility estimAtion method of multi-stAte 
system bAsed on structure leArning Algorithm

nowAtorskA metodA oceny niezAwodności systemów 
wielostAnowych w opArciu o Algorytm uczeniA struktury

Traditional reliability models, such as fault tree analysis (FTA) and reliability block diagram (RBD), are typically constructed 
with reference to the function principle graph that is produced by system engineers, which requires substantial time and effort. In 
addition, the quality and correctness of the models depend on the ability and experience of the engineers and the models are dif-
ficult to verify. With the development of data acquisition, data mining and system modeling techniques, the operational data of a 
complex system considering multi-state, dependent behavior can be obtained and analyzed automatically. In this paper, we present 
a method that is based on the K2 algorithm for establishing a Bayesian network (BN) for estimating the reliability of a multi-state 
system with dependent behavior. Facilitated by BN tools, the reliability modeling and the reliability estimation can be conducted 
automatically. An illustrative example is used to demonstrate the performance of the method.

Keywords: reliability analysis, Bayesian network, structure learning, multi-state system (MSS), dependent 
failure.

Tradycyjne modele niezawodności, takie jak analiza drzewa błędów (FTA) czy schemat blokowy niezawodności (RBD), buduje 
się zazwyczaj w oparciu o tworzone przez inżynierów systemowych schematy zasad działania systemu, których przygotowanie 
wymaga dużych nakładów czasu i pracy. Jakość i poprawność tych modeli zależy od umiejętności i doświadczenia inżynierów, a 
same modele są trudne do zweryfikowania. Dzięki rozwojowi technik akwizycji i eksploracji danych oraz modelowania systemów, 
dane operacyjne złożonego systemu uwzględniające jego zależne, wielostanowe zachowania mogą być pozyskiwane i analizowane 
automatycznie. W artykule przedstawiono metodę konstrukcji sieci bayesowskiej (BN) opartą na algorytmie K2, która pozwala 
na ocenę niezawodności systemu wielostanowego o zachowaniach zależnych. Dzięki narzędziom BN, modelowanie i szacowanie 
niezawodności może odbywać się automatycznie. Działanie omawianej metody zilustrowano na podstawie przykładu.

Słowa kluczowe: analiza niezawodności, sieć bayesowska, uczenie struktury, system wielostanowy, uszkodzenie 
zależne.

1. Introduction

For estimating the reliability of a complex system, constructing 
an accurate reliability model of the system is essential. A variety of 
popular reliability models are available, such as fault trees, reliability 
block diagrams, and Bayesian networks [28]. Unfortunately, they re-
quire professional knowledge and experience in modeling, along with 
a detailed understanding of the system structure and of how the sys-
tem operates. Moreover, substantial effort is required for constructing 
these models for complex systems, even if the systems are medium-
scale. Two main difficulties are encountered in building these models. 
(1) Modern systems consist of hardware and software with complex 
interactions, which are becoming increasingly difficult to model. (2) 
Reliability models and function principle graphs describe different 
aspects of the system. Although the designers know how the systems 
work, they lack the skills and experience in reliability modeling and 
analysis. There is a gap between system functional models and reli-
ability models.

To overcome these problems, researchers proposed automatic 
transformation methods for converting the function principle graphs 
to fault trees [1, 20] or RBDs [11]. In addition, Bucci attempted to con-

struct dynamic fault tree and event tree from corresponding Markov 
models such that time-dependent failure can be considered [2]. More-
over, the dynamic reliability models such as the dynamic fault tree 
(DFT) or dynamic reliability block diagram can be transformed into 
a dynamic Bayesian network to estimate the reliability of a dynamic 
system [17, 19, 21]. Even if reliability models could be automatically 
generated from function principle graphs, they would not reflect the 
changes that occur when the system is operating. In addition, when 
human factors are involved, it is difficult to incorporate these factors 
into the reliability models.

Methods such as the GO methodology and the Altarica project 
have been proposed for overcoming the problem of models not match-
ing the specifications of the systems under study. The GO methodol-
ogy uses a straightforward inductive logic to construct system models 
[18]. Enhanced methods improve the performance of the GO meth-
odology and provide additional analysis results about the systems. A 
new quantification algorithm that is based on BDD is proposed in [5]. 
The quality analysis method, in combination with FMEA, is discussed 
in [12] and the dynamic behavior can be modeled via the extended 
GO methodology [25]. Altarica is a high-level modeling language 
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that can describe the hierarchies of the system and the behaviors of 
components of the system [7, 23]. The model can be compiled into 
lower-level formalisms for analysis of the reliability and dependabil-
ity of the systems. The methods that are discussed above can provide 
models that are similar to the function principle graph; however, these 
methods are diffcult to use in practice due to their complexity.  

Data-driven system reliability estimation methods such as the 
prognostics and health management (PHM) method were proposed 
many years ago. However, the traditional PHM methods are designed 
for specified operational conditions and the analysis results are lim-
ited to the systems that are in operation [30]. Hence, researchers stud-
ied how to obtain a generic model from data. Zaitseva [31] presented 
an approach that is based on a decision tree and learns the structure 
function of the system that represents the states of the system and 
components from the source data. The method is used not only to 
construct reliability models of the general system but also to estimate 
the reliability of the corresponding human factor system [13]. Zait-
seva extended this method to multi-state systems [32]. However, the 
approach is only suitable for relatively simple systems that have no 
complicated interactions among components. Doguc [4] proposed a 
structure learning method that is based on Bayesian networks for con-
structing the reliability model. However, he only utilized a binary sys-
tem and did not consider the interactive effects between components.

Dependent failure is an important behavior that can substantially 
affect the reliability of a system. Two types of dependent failure were 
identified in [27]: The first type can be described by the function-
al-dependent gate in DFT. The second type is found in multi-state 
systems. Thus, dependent failure should be considered in reliability 
models. Unfortunately, it is difficult to identify the dependencies be-
tween components and the interactive effects between components 
and subsystems.

In this paper, we propose a method that is based on the struc-
ture learning algorithm for modeling and estimating the reliability of 
multi-state systems while considering dependent failures. We focus 
on the dependency behavior between components.

The remainder of this paper is organized as follows: Section 2 
briefly summarizes the multi-state system with correlative behavior. 
Section 3 presents a methodology for modeling the cause and effect 
relationships of multi-state systems that is based on the K2 algorithm 
[3] and evaluating conditional probability tables (CPTs). In Section 4, 
an example is used to demonstrate the entire modeling process. Sec-
tion 5 presents the experimental analysis results on the accuracy and 
performance of the methodology. Finally, in Section 6, the conclu-
sions of this work are presented and discussed.

2. Multi-state system with dependency behavior

Multi-state systems were introduced in 1968. Many researchers 
gradually contributed to the reliability theory of multi-state systems 
and developed a variety of methods for evaluating the reliability of 
multi-state systems. The related works are referenced in [14, 29]. 

For simplicity, traditional reliability modeling methods assume 
that the components are independent. However, this assumption is not 
practical for real engineering systems. In [27], the authors described 
several dependent failure scenarios, such as common cause failure, 
load-sharing, cascade failure [24], sequential failure, cross-system 
dependencies and interaction between components. These dependent 
failures would severely affect the reliability estimation of the sys-
tems.

Thus, researchers improved the traditional models to include de-
pendent failures. A stochastic process [16] is an intuitive model for 
representing the correlations between components. Song [26] pre-
sented stochastic multivalued models for evaluating the reliability of 
an MSS with dependent multistate components. However, the space 
explosion problem poses substantial challenges for large-scale multi-

state systems. So researchers explored the combinatorial methods to 
model the multi-state system with dependent failure. Levitin [15] ex-
tended the universal generating function approach to multi-state sys-
tems with dependent elements. The dependent failure is of the second 
type [26]. Nagayama [22] analyzed the reliability of a multi-state sys-
tem with partially dependent components based on the multi-valued 
decision diagrams. 

In the works that are discussed above, the dependencies between 
components are formulated as conditional probabilities. The problem 
can be more easily represented by a Bayesian network, which can 
describe complicated relationships. Thus, BN is an alternative way 
of modeling a multi-state system with dependency behavior. Various 
BN tools such as BNT [6] support BN inference and implement many 
learning algorithms. Consequently, BN is a more suitable method for 
modeling multi-state systems with consideration of the dependency 
behavior.

3. Methodology

In this section, a reliability estimation method for multi-state sys-
tems that is based on the K2 algorithm [3] and the point estimation 
method is proposed. The dependent relationships among components, 
subsystems and the system are learned from data via the K2 algo-
rithm. The parameters of the BN are estimated via the point estimation 
method. Then, the reliability of the multi-state system with consid-
eration of the customer demand can be evaluated. Facilitated by BN 
tools, the whole process can be conducted automatically.

3.1. Structure learning algorithm K2

The K2 algorithm was proposed in [3] as a heuristic-search meth-
od. This algorithm assumes the following: 1) the variables are ordered 
and 2) all structures are equally likely. According to the assumptions, 
high-rank variables will not be the parents of low-rank variables. 
Hence, the search space of the parent sets of a variable can be reduced 
substantially.

The K2 algorithm consists of two main components: 
A scoring function that quantifies the associations and ranks 1) 
the parent sets according to their scores:
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To improve the run-time speed of K2, the logarithmic version of 
the equation above is implemented in this paper. The equation is de-
scribed as follows:
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where ( )Γ ⋅  denotes the gamma function and the other parameters are 
as defined above;

A greedy-search method that incrementally adds nodes to the 2) 
parent set to reduce the search space.

With the heuristic, the K2 algorithm does not need to consider all 
possible parents sets; it adds incrementally the parent whose addition 
most increases the probability of the resulting structure. If the addition 
of no single parent can increase the probability, no additional parents 
are added to the node: Initially, node ix  has no parents and the nodes 

1 2 1, , , ix x x −  are candidates of the parent sets. The parent sets may 
be φ ,{ },{ }, ,{ },{ , }, ,{ , }, ,{ , , , }x x x x x x x x x xi i i1 2 1 1 2 1 1 1 2 1   − − − . 
Hence, the parent set space is reduced substantially. In addition, to 
increase the efficiency of the algorithm, the K2 algorithm uses a pa-
rameter u to restrict the maximum number of parents. The pseudo-
code of the K2 algorithm can be found in [3].

According to the description above, to use the K2 algorithm to 
learn the exact Bayesian network, the variables’ ordering should cor-
respond to the practical operational mode of the system. For example, 
a subsystem should be higher in the ordering than its child nodes. In 
addition, the parameter u should be set reasonably to balance the ef-
ficiency and the correctness of the Bayesian network. In [3], several 
suggestions are proposed for obtaining the most probable structure.

3.2. Probability distribution estimation

Via the K2 algorithm, the relationships among the components, 
subsystems and system can be obtained. To evaluate the reliability 
of MSS, the parameters of the Bayesian network should be estimated 
using the data.

Traditional reliability methods typically assume that the failure 
times of the components follow a probability distribution. However, 
this assumption may not hold in practice. Researchers considered inte-
grating data from various levels of the system to reduce the uncertainty 
in the system reliability assessment. These methods [8, 9] can use the 
data to estimate the parameters of multi-state components. However, 
these approaches require prior knowledge about the system structure 
and about the cause and effect between components. These conditions 
are difficult to satisfy when we only have the function principle graph 
and the operation data of the system. Consequently, statistical estima-
tion theory is used to determine the probability distribution.

There are two main types of estimation procedures in statistics: 
point and interval estimation. For convenience, point estimation is 

applied in this paper. Interval estimation is also applicable in our 
method.

First, according to the BN model that was learned from the data, 
the nodes without parents can be identified. The probability distribu-
tions of these nodes can be calculated easily. For node iX , denotes the 
number of times that state j  of component iX  occurs in the data as 

ijH  and the number of all instances in the data as iH . The state prob-
ability distribution of iX  is presented in Table 1, where in  denotes 
the number of states of component iX .

Second, the conditional probability distributions of the nodes 
that have parents are estimated. For example, the structure of nodes 

, ,i j kX X X  is illustrated in Fig. 1.

Fig. 1. Illustrative example

The CPT of  Xk  can be estimated via the following formula:
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{ , , }k kr i iw j jvH X c X c X c= = =  denotes the number of instances 
when , ,k kr i iw j jvX c X c X c= = = . { , }i iw j jvH X c X c= =  is also 
available.

According to the method above, a BN that represents the depend-
ent relationships and all parameters that represent the logical relation-
ships can be obtained. Hence, the reliability of the MSS can be evalu-
ated. Assume the system has M unique states. The reliability of the 
multi-state system can be expressed by the following formula:
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where (t)S   denotes the current state of the system and (t)w  de-
notes the demand for the system at time t. According to the 
model that is obtained above, the joint probability distribution 

1( , , , , , )j mP S X X X   can be calculated. Thus, the marginal prob-
ability distribution { (t) }

ii sP S s p= =   is also obtained.

4. Illustrative example

4.1. Classification of Failure Conditions

In this paper, the task processing system example from [15] is 
used to demonstrate our method. The system logic diagram is shown 
as Fig. 2.

Table 1. Probability distribution of component

iX 1 2  j  in

P 1iH
H

2iH
H



ijH
H



iinH
H



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 22, No. 1, 2020 173

sciENcE aNd tEchNology

Fig. 2. System logic diagram of the task processing system

The system consists of three independent computing blocks: 
A, B and C. Blocks A and B are constructed in parallel. Then, 
the parallel structure P and block C are arranged in series. Each 
block is composed of two processing units that differ in terms 
of priority. Elements 1, 3 and 5 have high priorities in blocks A, 
B and C. When the high-priority unit accesses a database, the 
low priority unit must to wait for the operation to be completed. 
Thus, the processing speed of the low-priority unit is affected 
by the load of the high-priority unit. The perform-
ance distributions of elements 1, 3 and 5 and the con-
ditional performance distributions of elements 2, 4 
and 6 can be found in [15].

The Bayesian network model of the task process-
ing system is illustrated in Fig. 3. Nodes G1, G2, G3, 
G4, G5, and G6 represent processing units 1, 2, 3, 4, 5, 
and 6. Nodes A, B and C represent computing blocks 
A, B and C. Node P represents the subsystem that con-
sists of blocks A and B. Node S represents the task 
processing system.

The BN is used to evaluate the performance in model learning 
from the data. In the next section, the logic sampling method [10] 
is used to randomly generate virtual instances to demonstrate the 
relationship between accuracy of the BN and the number of obser-
vations.

Fig. 3. Bayesian network of the task processing system

The performance of each element is discrete; hence, we treat the 
performance as the state of the element, namely, the performance and 
the state of the element have the same meaning in this paper.

The performance distributions of elements 1, 3 and 5 are present-
ed in Table 2. The conditional performance distributions of elements 
2, 4 and 6 are presented in Table 3, Table 4 and Table 5.

The conditional performance distributions of block A are present-
ed in Table 6. Similarly, the conditional performance distributions of 
nodes B, C, P and S can be obtained.

The data obtained based on the monitoring and presented in Ta-
ble 7, which collected 200 samples of the task processing system. 
The data set demonstrates some combinations of component states 
and the corresponding performance levels of the system. Though 
the data set is small, the relationships among the components and 
system can be inferred partially. The detail process is illustrated in 
the next subsection.

4.2. Reliability estimation of the task processing system

According to the system logic diagram in Fig. 2, the ranking of 
the nodes depends on the hierarchy of the nodes, which will affect the 
efficiency of the K2 algorithm. The ranks and the number of  perform-
ance value of the components are listed in Table 10.

Using the K2 algorithm, the associations among the components, 
subsystems and system can be identified and the score function values 
that correspond to parents can be obtained. The results are listed in 

Table 2. Performance distributions of elements 1, 3 and 5

G1 0 10 20 30 40 50

P1 0.05 0.05 0.1 0.1 0.5 0.2

G3 0 20 60

P3 0.1 0.7 0.2

G5 0 80 100

P5 0.1 0.2 0.7

Table 3. Conditional performance distribution of element 2

G1 0 10 20 30 40 50

G2

0 0.05 0.05 0.05 0.05 0.1 0.1

15 0.15 0.15 0.55 0.55 0.9 0.9

30 0.8 0.8 0.4 0.4 0 0

Table 4. Conditional performance distribution of element 4

G3 0 20 60

G4

0 0.05 0.05 0.05

15 0.15 0.35 0.95

30 0.8 0.6 0

Table 5. Conditional performance distribution of element 6

G5 0 80 100

G6

0 0.05 0.1 0.1

30 0.15 0.4 0.6

50 0.8 0.5 0.3
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Table 6. Conditional probability distribution of block A

G1 0 10 20 30 40 50

G2 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

55 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

60 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 7. Data obtained based on the monitoring of the task processing system

No. G1 G2 A G3 G4 B P G5 G6 C S

1 40 15 55 60 15 0 55 100 30 130 55

2 40 15 55 20 30 50 105 0 50 50 50

3 50 15 65 20 15 35 100 0 50 50 50

4 20 30 50 0 30 30 80 100 30 130 80

5 40 15 55 60 15 75 115 80 50 130 115

6 10 30 40 20 30 50 90 80 30 110 80

7 20 15 35 0 30 30 65 80 50 130 65

8 10 30 40 20 30 50 90 80 30 110 90

9 0 15 15 20 30 50 65 100 0 100 65

10 0 0 0 20 30 50 50 0 50 50 50

… … … … … … … … … … … …

200 30 30 60 20 30 50 110 100 50 150 110

Table 10. Ranks and the number of performance value of the components

Rank Component/Subsystem The number of performance value

1 G1 6

2 G2 3

3 A 15

4 G3 3

5 G4 3

6 B 9

7 P 33

8 G5 3

9 G6 3

10 C 8

11 S 30
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Table 11 and the raw system structure inferred from the data is shown 
in Fig. 4. The system structure lacks of the relationship between com-
ponent C and the system and the reason is that the data in Table 7 just 
represents partial state combinations of the system. The correlation of 
accuracy and data volume is analyzed in the next section. 

Fig. 4. The system structure inferred from the data

The performance distribution parameters of the components 
or subsystems can be estimated by the data obtained based on the 
monitoring. The approximate performance distributions of elements 
G1 and G2 in the data are presented in Table 12 and Table 13. The 
performance distributions for the other elements can be obtained via 
the same approach.

Then, the reliability of the task processing system with considera-
tion of the demand can be evaluated and the system reliability as a 
function of the demand is plotted in Fig. 5. The result is compared 
with the reliability that was calculated via the UGF method in Fig. 5. 

Fig. 5. Reliability comparison between our method and the UGF method

5. Experimental analysis

5.1. Generating random instances

The logic sampling generates an instance by randomly selecting 
values from the probability tables or conditional probability tables. 
The nodes are visited from the root nodes to the leaves; hence, all 
nodes in the BN can be instantiated once all nodes have been tra-
versed. The detailed algorithm is available in [10].

Next, let us work through one round of simulation for the task 
processing system. Consider the root node G1 of this network as an 
example. The random number generator produces a value between 0 
and 1. Assume that the random number is 0.56. Then, the correspond-
ing performance of unit 1 is 40, as illustrated in Fig. 6.

Fig. 6. Cumulative performance curve for processing unit 1

Table 11. Associations and score function values

Component/Sub-
system Parent set Score function value

G1 φ −292.63

G2 { G1} −112.85

A {G1, G2 } −184.89

G3 φ −165.17

G4 {G3} −142.15

B {G3, G4 } −93.49

G5 φ −173.42

G6 {G5 } −191.04

C {G5, G6 } −107.88

P {A, B} −427.34

S {P} −429.06

Table 12. Probability estimator of component G1

G1 0 10 20 30 40 50

p 0.04 0.05 0.06 0.11 0.515 0.225

Table 13. Conditional probability distribution estimator of component G2

G1 0 10 20 30 40 50

G2

0 0 0 0 0 0.1165 0.1111

15 0.25 0.2 0.25 0.5 0.8835 0.8889

30 0.75 0.8 0.75 0.5 0 0
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The performance values of other root nodes can be obtained as 
well. The performance instances of all root nodes are listed in Table 7.

Next, the value for child node G2 should be generated. According 
to Table 3, the conditional cumulative performance curve for process-
ing unit 2 can be calculated. The random number is 0.72; hence, the 
performance value of unit 2 is 15. The performance instances of units 
2, 4 and 6 are listed in Table 8.

Then, the performance values of other nodes in the BN can be 
computed via the method that is demonstrated above. Finally, the full 
combinations of values in this simulation round are listed in Table 9.

The simulation is repeated 20000 times and 20000 sets of cases 
are generated as the operation data of the system. These cases form 
the training data set.

5.2. The correlation between accuracy and data volume

The number of observations that are used to discover the associa-
tions among nodes affects the efficiency of the K2 algorithm and the 
accuracy of the constructed BN. The error rate that is defined in [4] 
was used here to analyze the relationship between accuracy of the BN 
and the number of observations. The error rate can be calculated as 
follows:

 ρ =
+A A
A

FP FN

T
 (5)

FPA : the number of associations that do not exist in the actual BN.

FNA : the number of associations in the actual BN that are missed.

TA :  the number of the associations in the constructed BN.

As the amount of data increases, structure learned from data ap-
proximates the actual BN with increasing accuracy. The BN models 
that correspond to various numbers of instances are illustrated in 
Fig. 6.

The last Bayesian network has same structure as the model that is 
illustrated in Fig. 3. The BN that is constructed using a dataset with 
1000 instances is similar to the actual BN of the task processing sys-
tem. The BN that was built with 2500 instances has the same associa-
tions as the BN with 1000 instances. Hence, the additional data do not 
provide more information regarding the associations between block 

C and the system. With 
the increase in the amount 
of data, node G5 becomes 
associated with node S. 
However, the performance 
of the system depends on 
block C and not on ele-
ment 5. Although the ad-
ditional data provide new 
information about the rela-

tion between the system and block C, the associations do not represent 
the real relationship. Moreover, the error rates of the BNs with 3000 
and 12000 instances become higher than that of the BN with 2500 
instances. In the course of training, the error rate may fluctuate with 
the increase in the amount of data before finally converging. The error 
rate curve is plotted in Fig. 7

According to Fig. 6 and Fig. 7, the dependent relationships of 
computing blocks A and B and the system are easily constructed; 
however, more data are required for accurately establishing the as-
sociations of computing block C and the system. That is because the 
task processing system is a series system and its performance depends 
on the minimal performance of subsystem P and block C. Hence, the 
accuracy may vary with the structure of the system.

6. Conclusions and Discussion

Traditional reliability methods strongly depend on the ability and 
experience of the engineers, which results in differences among reli-
ability models that model the same system. With the development of 
data acquisition and data mining techniques, the operational data of 

Table 7. Performance values of all root nodes

G1 G3 G5

40 20 80

Table 8. Performance instances of units 2, 4 and 6

G2 G4 G6

15 30 30

Table 9. Full combinations of values in this simulation round

G1 G2 G3 G4 G5 G6 A B C P S

40 15 20 30 80 30 55 50 110 105 105

Fig. 7. BN models for various numbers of instances

Fig. 8. Error rate versus the number of observations
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the systems can be monitored and analyzed for reliability estimation 
and system optimization. In this paper, a new method that is based 
on the K2 algorithm is proposed for constructing a reliability model 
of a system and for estimating the parameters of components from 
data. In the illustrative example, the Bayesian network model that is 
learned from the data is the same as the Bayesian network model that 
we constructed. Moreover, comparing with the universal generating 
function method, the results of the two methods are very close. Hence, 
this approach is effective.  

According to experimental results, the efficiency of the method 
may depend on the structure of the systems. Thus, determining how 
to integrate the structure of the systems as prior knowledge into the 
process of structure learning will constitute our future work. This pa-

per does not consider the scenario of missing data, which is common 
in practice. Determining how to handle missing data will be left for 
future work.

In conclusion, this method is suitable for reliability estimation of 
complex systems while considering multi-state and dependency be-
havior. Facilitated by BN tools, reliability modeling and reliability es-
timation can be conducted automatically without human intervention.
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